العلوم و التكنولوجيا

Southward impact excavated magma ocean at the lunar South Pole–Aitken basin

Southward Impact Excavated Magma Ocean At The Lunar South Pole–Aitken Basin

  • Wilhelms, D. E. The geologic history of the Moon. United States Geological Survey Professional Paper 1348 (1987).

  • Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole-Aitken basinimpact.Icarus220, 730–743 (2012).

    Article 
    ADS 

    Google Scholar
     

    the و D. و of - تفاصيل مهمة

  • Melosh, H. J. et al. South Pole–Aitken basin ejecta reveal the Moon’s upper mantle.Geology45, 1063–1066 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Nesvorný, D. et al. Early bombardment of the moon: connecting the lunar crater record to the terrestrial planet formation.Icarus399, 115545 (2023).

    Article 

    Google Scholar
     

    the و Article  و Google - تفاصيل مهمة

  • Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-livedmagmaocean on a young Moon.Sci. Adv.6, eaba8949 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miljković, K. et al. Largeimpactcratering during lunar magma ocean solidification.Nat. Commun.12, 5433 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

    Article  و ADS  و PubMed  - تفاصيل مهمة

  • Canup, R. M. et al. Origin of the Moon.Rev. Mineral. Geochem.89, 53–102 (2023).

    Article 

    Google Scholar
     

  • Snyder, G. A., Taylor, A. & Neal, C. R. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere.Geochim. Cosmochim. Acta56, 3809–3823 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

    Article  و Google و Scholar  - تفاصيل مهمة

  • Evans, A. J. et al. Reexamination of early lunar chronology with GRAIL data: terranes, basins, and impact fluxes.J. Geophys. Res. Planets123, 1596–1617 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages.Meteorit. Planet. Sci.50, 715–732 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

    Article  و ADS  و Google - تفاصيل مهمة

  • Moriarty, D. P. et al. Evidence for a stratified upper mantle preserved within the South Pole-Aitken Basin.J. Geophys. Res. Planets121, e2020JE006589 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hurwitz, D. M. & Kring, D. A. Differentiation of the South Pole–Aitken basin impact melt sheet: implications for lunar exploration.J. Geophys. Res. Planets119, 1110–1133 (2014).

    Article 
    ADS 

    Google Scholar
     

    Article  و ADS  و Google - تفاصيل مهمة

  • Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust-mantle origins.J. Geophys. Res. Planets105, 4197–4216 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Garrick-Bethell, I. et al. Troctolite 76535: a sample of the Moon’s South Pole-Aitken basin?Icarus338, 113430 (2020).

    Article 
    CAS 

    Google Scholar
     

    Article  و CAS  و Google - تفاصيل مهمة

  • Joy, K. H. et al. Evidence of a 4.33 billion year age for the Moon’s South Pole–Aitken basin.Nat. Astron.9, 55–65 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Orgel, C. et al. Ancient bombardment of the inner solar system: reinvestigation of the “fingerprints” of different impactor populations on the lunar surface.J. Geophys. Res. Planets123, 748–762 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

    of و the و Article  - تفاصيل مهمة

  • Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment.Earth Planet. Sci. Lett.355–356, 144–151 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Garrick-Bethell, I. & Zuber, M. T. Elliptical structure of the lunar South Pole-Aitken basin.Icarus204, 399–408 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

    Article  و ADS  و Google - تفاصيل مهمة

  • James, P. B. et al. Deep structure of the lunar South Pole-Aitken basin.Geophys. Res. Lett.46, 5100–5106 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Andrews-Hanna, J. C. & Zuber, M. T. Elliptical craters and basins on the terrestrial planets.Geol. Soc. Am. Spec. Pap.465, 1–13 (2010).


    Google Scholar
     

    Google و Scholar  و Article  - تفاصيل مهمة

  • Zuber, M. T., Smith, D. E., Lemoine, F. G. & Neumann, G. A. The shape and internal structure of the Moon from the Clementine mission.Science266, 1839–1843 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keane, J. T., James, P. B. & Matsuyama, I. The Moon without impact basins and the nature of the South Pole–Aitken basin and the farside highlands. InProc. 53rd Lunar and Planetary Science ConferenceAbstract 1477 (Lunar and Planetary Institute, 2022).

  • Andrews-Hanna, J. C. et al. The structure and evolution of the lunar interior.Rev. Mineral. Geochem.89, 243–292 (2023).

    and و the و J. - تفاصيل مهمة

    Article 

    Google Scholar
     

  • Wieczorek, M. A., Weiss, B. P. & Stewart, S. T. An impactor origin for lunar magnetic anomalies.Science335, 1212–1215 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hood, L. L. & Artemieva, N. A. Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations.Icarus193, 485–502 (2008).

    & و lunar و L. - تفاصيل مهمة

    Article 
    ADS 

    Google Scholar
     

  • Wakita, S. et al. Impactor material records the ancient lunar magnetic field in antipodal anomalies.Nat. Commun.12, 6543 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schultz, P. & Crawford, D. Origin of nearside structural and geochemical anomalies on the Moon.Geol. Soc. Am. Spec. Pap.477, 141–159 (2011).

    the و Wakita, و S. - تفاصيل مهمة


    Google Scholar
     

  • Gault, D. E. & Wedekind, J. A. Experimental studies of oblique impact. In9th Lunar and Planetary Science Conference3843–3875 (Pergamon Press, 1989).

  • Johnson, B. C. et al. Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors.Icarus271, 350–359 (2016).

    Article 
    ADS 

    Google Scholar
     

    of و and و Gault, - تفاصيل مهمة

  • Schultz, P. H. & Stickle, A. M. Arrowhead craters and tomahawk basins: signatures of oblique impacts at large scales. InProc. 42nd Lunar and Planetary Science ConferenceAbstract 2611 (Lunar and Planetary Institute, 2011).

  • Andrews-Hanna, J. C. et al. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry.Science339, 675–678 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leonard, G. J. & Tanaka, K. L. Hellas basin, Mars: formation by oblique impact. InProc. 24th Lunar and Planetary Science ConferenceAbstract 867 (Lunar and Planetary Institute, 1993).

    and و J. و by - تفاصيل مهمة

  • Tanaka, K. L. & Leonard, G. J. Geology and landscape evolution of the Hellas region of Mars.J. Geophys. Res. Planets.100, 5407–5432 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Wichman, R. W. & Schultz, P. H. The Crisium basin: implications of an oblique impact for basin ring formation and cavity collapse. InLarge Meteorite Impacts and Planetary Evolution, Geological Society of America Special Paper 293(eds Dressler, B. O., Grieve, R. A. F. & Sharpton, V. L.) https://doi.org/10.1130/SPE293-p61 (Geological Society of America, 1992).

  • Moruzzi, S. A., Andrews-Hanna, J. C., Schenk, P. & Johnson, B. C. Pluto’s Sputnik basin as a peak-ring or multiring basin: a comparative study.Icarus405, 115721 (2023).

    & و of و R. - تفاصيل مهمة

    Article 
    CAS 

    Google Scholar
     

  • Citron, R. I., Smith, D. E., Stewart, S. T., Hood, L. L. & Zuber, M. T. The South Pole-Aitken basin: constraints on impact excavation, melt, and ejecta.Geophys. Res. Lett.51, e2024GL110034 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wakita, S. et al. Asouthwarddifferentiated asteroid forms the South-Pole Aitken basin. InProc. 56th Lunar and Planetary Science ConferenceAbstract 1403 (Lunar and Planetary Institute, 2025).

    and و S. و L. - تفاصيل مهمة

  • Vaughan, W. M. & Head, J. W. Impact melt differentiation in the South Pole-Aitken basin: some observations and speculations.Planet. Space Sci.91, 101–106 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gowman, G. & Andrews-Hanna, J. C. Gravity and density structure in the South Pole-Aitken basin rim region: implications for Artemis. InProc. 55th Lunar and Planetary Science ConferenceAbstract 1747 (Lunar and Planetary Institute, 2024).

  • Lawrence, D. J., Elphic, R. C., Feldman, W. C. & Prettyman, T. H. Small-area thorium features on the lunar surface.J. Geophys. Res. Planets108, 5102 (2003).

    and و & و J. - تفاصيل مهمة

    Article 
    ADS 

    Google Scholar
     

  • Moriarty, D. P. III & Petro, N. E. Mineralogical characterization of the lunar south polar region: 1. The Artemis exploration zone.J. Geophys. Res. Planets129, e2023JE008266 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, M. W. & Kraettli, G. Experimental crystallization of the lunar magma ocean, initial selenotherm and density stratification, and implications for crust formation, overturn and the bulk silicate Moon composition.J. Geophys. Res. Planets127, e2022JE007187 (2022).

    the و and و & - تفاصيل مهمة

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warren, P. H. & Wasson, J. T. The origin of KREEP.Rev. Geophys.17, 73–88 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Broquet, A. & Andrews-Hanna, J. C. The moon before mare.Icarus408, 115846 (2024).

    & و J. و The - تفاصيل مهمة

    Article 

    Google Scholar
     

  • Zhang, Q. W. L. et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts.Nature643, 356–360 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haskin, L. A. The Imbrium impact event and the thorium distribution at the lunar highlands surface.J. Geophys. Res. Planets103, 1679–1689 (1998).

    L. و the و Zhang, - تفاصيل مهمة

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Levin, J. N., Evans, A. J., Andrews-Hanna, J. C. & Daubar, I. J. Lunar crustal KREEP distribution.J. Geophys. Res. Planets130, e2024JE008418 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roy, A. et al. The significance of partition coefficients of heat production elements in the lunar interior for determining the present-day selenotherm. InProc. 54th Lunar and Planetary Science ConferenceAbstract 2292 (Lunar and Planetary Institute, 2023).

    J. و A. و Lunar - تفاصيل مهمة

  • Kamata, S. et al. The relative timing of Lunar Magma Ocean solidification and the Late Heavy Bombardment inferred from highly degraded impact basin structures.Icarus250, 492–503 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Barnes, J. J. et al. Early degassing of lunar urKREEP by crust-breaching impact(s).Earth Planet. Sci. Lett.447, 84–94 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

    Article  و ADS  و Google - تفاصيل مهمة

  • Zhang, N. et al. Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact.Nat. Geosci.15, 37–41 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liang, W. et al. Vestiges of a lunar ilmenite layer following mantle overturn revealed by gravity data.Nat. Geosci.17, 361–366 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

    Article  و ADS  و CAS  - تفاصيل مهمة

  • Morbidelli, A. et al. The timeline of the lunar bombardment: revisited.Icarus305, 262–276 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, M.-H. et al. Obliteration of ancient impact basins on the Moon by viscous relaxation.Nat. Astron.9, 333–346 (2025).

    Article 
    ADS 

    Google Scholar
     

    Article  و ADS  و Google - تفاصيل مهمة

  • Dauphas, N. et al. Completion of lunar magma ocean solidification at 4.43 Ga.Proc. Natl Acad. Sci. USA122, e2413802121 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuber, M. T. et al. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.Science339, 668–671 (2013).

  • Goossens, S. et al. High‐resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust.J. Geophys. Res. Planets125, e2019JE006086 (2020).

    the و of و et - تفاصيل مهمة

  • Neumann, G. A. et al. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements.Sci. Adv.1, e1500852 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, W. & Andrews-Hanna, J. C. Probing the source of ancient linear gravity anomalies on the Moon.Icarus380, 114978 (2022).

    Article 

    Google Scholar
     

    Article  و Google و Scholar  - تفاصيل مهمة

  • Wieczorek, M. A. & Meschede, M. SHTools: tools for working with spherical harmonics.Geochem. Geophys. Geosyst.19, 2574–2592 (2018).

  • Andrews-Hanna, J. C. et al. Ring faults and ring dikes around the Orientale basin on the Moon.Icarus310, 1–20 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lawrence, D. J. et al. Global elemental maps of the Moon: the Lunar Prospector gamma-ray spectrometer.Science281, 1484–1489 (1998).

    the و J. و et - تفاصيل مهمة

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prettyman, T. H. et al. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector.J. Geophys. Res. Planets111, E12007 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Whitten, J. L. & Head, J. W. Lunar cryptomaria: physical characteristics, distribution, and implications for ancient volcanism.Icarus247, 150–171 (2015).

    J. و of و Lunar - تفاصيل مهمة

    Article 
    ADS 

    Google Scholar
     

  • Jolliff, B. L. et al. Non-mare silicic volcanism on the lunar farside at Compton–Belkovich.Nat. Geosci.4, 566–571 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siegler, M. A. et al. Remote detection of a lunar granitic batholith at Compton–Belkovich.Nature620, 116–121 (2023).

    et و al. و lunar - تفاصيل مهمة

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hagerty, J. J. et al. Refined thorium abundances for lunar red spots: implications for evolved, nonmare volcanism on the Moon.J. Geophys. Res. Planets111, E06002 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL.Science339, 671–675 (2013).

    J. و et و al. - تفاصيل مهمة

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garrick-Bethell, I., Nimmo, F. & Wieczorek, M. A. Structure and formation of the lunar farside highlands.Science330, 949–951 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmentier, E. M., Zhong, S. & Zuber, M. T. Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP?Earth Planet. Sci. Lett.201, 473–480 (2002).

    of و & و M. - تفاصيل مهمة

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jones, M. J. et al. A South Pole–Aitken impact origin of the lunar compositional asymmetry.Sci. Adv.8, eabm8475 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. & Lognonné, P. Seismic detection of the lunar core.Science331, 309–312 (2011).

    of و the و lunar - تفاصيل مهمة

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • James, P. B., Keane, J. T. & Lee, J. S. South Pole-Aitken basin ejecta inferred from crustal thickness. InProc. 53rd Lunar and Planetary Science ConferenceAbstract 1500 (Lunar and Planetary Institute, 2022).

  • Salters, V. J. M. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges.Earth Planet. Sci. Lett.166, 15–30 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

    J. و & و and - تفاصيل مهمة

  • Solomatov, V. 9.04 – Magma Oceans and Primordial Mantle Differentiation. InTreatise on Geophysics (Second Edition)Vol. 9 (ed. Schubert, G.) 81–104 https://doi.org/10.1016/B978-0-444-53802-4.00155-X (Elsevier, 2015).

  • McDonough, W. F. & Sun, S.-S. The composition of the Earth.Chem. Geol.120, 223–253 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nemchin, A. A., Pidgeon, R. T., Whitehouse, M. J., Vaughan, J. P. & Meyer, C. SIMS U–Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP.Geochim. Cosmochim. Acta72, 668–689 (2008).

    of و & و the - تفاصيل مهمة

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon.Nat. Geosci.2, 133–136 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andrews-Hanna, J. C. Code accompanying the paper “Southward impactexcavatedmagma ocean at the lunar South Pole-Aitken basin”.Zenodohttps://doi.org/10.5281/zenodo.16816551 (2025).

    the و of و lunar - تفاصيل مهمة



  • ■ مصدر الخبر الأصلي

    نشر لأول مرة على:www.nature.com

    تاريخ النشر:2025-10-08 03:00:00

    الكاتب:Jeffrey C. Andrews-Hanna

    نشر و لأول و مرة - تفاصيل مهمة

    تنويه من موقع “بتوقيت بيروت”:

    تم جلب هذا المحتوى بشكل آلي من المصدر:
    www.nature.com
    بتاريخ:2025-10-08 03:00:00.
    الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “بتوقيت بيروت”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.

    ملاحظة:قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

    ampLtB IdampQuotFig1ampQuot ClassampQuotC-Article-SectionFigure-CaptionampQuot Data-TestampQuotFigure-Caption-TextampQuotampGtFig 1 Gravity And Topography Maps Of Giant Tapered Impact BasinsampLtBampGt
    <b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1: Gravity and topography maps of giant tapered impact basins.</b>
    Southward Impact Excavated Magma Ocean At The Lunar South Pole–Aitken Basin
    B_t_lb

    موقع بتوقيت بيروت — منصتك لمتابعة أهم الأخبار العاجلة وال ات السياسية والاقتصادية من لبنان والعالم. نحن نغطي الأحداث لحظة بلحظة، لتبقى دائمًا في قلب الخبر.

    هذا و في و تم - تفاصيل مهمة


    اكتشاف بتوقيت بيروت | اخبار لبنان والعالم لحظة بلحظة

    اشترك أحدث التدوينات المرسلة إلى بريدك الإلكتروني.

    مقالات ذات صلة

    زر الذهاب إلى الأعلى