Southward impact excavated magma ocean at the lunar South Pole–Aitken basin

Wilhelms, D. E. The geologic history of the Moon. United States Geological Survey Professional Paper 1348 (1987).
Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole-Aitken basinimpact.Icarus220, 730–743 (2012).
Article
ADS
Google Scholar
the و D. و of - تفاصيل مهمة
Melosh, H. J. et al. South Pole–Aitken basin ejecta reveal the Moon’s upper mantle.Geology45, 1063–1066 (2017).
Article
ADS
Google Scholar
Nesvorný, D. et al. Early bombardment of the moon: connecting the lunar crater record to the terrestrial planet formation.Icarus399, 115545 (2023).
Article
Google Scholar
the و Article و Google - تفاصيل مهمة
Maurice, M., Tosi, N., Schwinger, S., Breuer, D. & Kleine, T. A long-livedmagmaocean on a young Moon.Sci. Adv.6, eaba8949 (2020).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Miljković, K. et al. Largeimpactcratering during lunar magma ocean solidification.Nat. Commun.12, 5433 (2021).
Article
ADS
PubMed
PubMed Central
Google Scholar
Article و ADS و PubMed - تفاصيل مهمة
Canup, R. M. et al. Origin of the Moon.Rev. Mineral. Geochem.89, 53–102 (2023).
Article
Google Scholar
Snyder, G. A., Taylor, A. & Neal, C. R. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere.Geochim. Cosmochim. Acta56, 3809–3823 (1992).
Article
ADS
CAS
Google Scholar
Article و Google و Scholar - تفاصيل مهمة
Evans, A. J. et al. Reexamination of early lunar chronology with GRAIL data: terranes, basins, and impact fluxes.J. Geophys. Res. Planets123, 1596–1617 (2018).
Article
ADS
Google Scholar
Borg, L. E., Gaffney, A. M. & Shearer, C. K. A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages.Meteorit. Planet. Sci.50, 715–732 (2015).
Article
ADS
CAS
Google Scholar
Article و ADS و Google - تفاصيل مهمة
Moriarty, D. P. et al. Evidence for a stratified upper mantle preserved within the South Pole-Aitken Basin.J. Geophys. Res. Planets121, e2020JE006589 (2021).
Article
ADS
Google Scholar
Hurwitz, D. M. & Kring, D. A. Differentiation of the South Pole–Aitken basin impact melt sheet: implications for lunar exploration.J. Geophys. Res. Planets119, 1110–1133 (2014).
Article
ADS
Google Scholar
Article و ADS و Google - تفاصيل مهمة
Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. & Wieczorek, M. A. Major lunar crustal terranes: surface expressions and crust-mantle origins.J. Geophys. Res. Planets105, 4197–4216 (2000).
Article
ADS
CAS
Google Scholar
Garrick-Bethell, I. et al. Troctolite 76535: a sample of the Moon’s South Pole-Aitken basin?Icarus338, 113430 (2020).
Article
CAS
Google Scholar
Article و CAS و Google - تفاصيل مهمة
Joy, K. H. et al. Evidence of a 4.33 billion year age for the Moon’s South Pole–Aitken basin.Nat. Astron.9, 55–65 (2025).
Article
ADS
CAS
PubMed
Google Scholar
Orgel, C. et al. Ancient bombardment of the inner solar system: reinvestigation of the “fingerprints” of different impactor populations on the lunar surface.J. Geophys. Res. Planets123, 748–762 (2018).
Article
ADS
CAS
Google Scholar
of و the و Article - تفاصيل مهمة
Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment.Earth Planet. Sci. Lett.355–356, 144–151 (2012).
Article
ADS
Google Scholar
Garrick-Bethell, I. & Zuber, M. T. Elliptical structure of the lunar South Pole-Aitken basin.Icarus204, 399–408 (2009).
Article
ADS
CAS
Google Scholar
Article و ADS و Google - تفاصيل مهمة
James, P. B. et al. Deep structure of the lunar South Pole-Aitken basin.Geophys. Res. Lett.46, 5100–5106 (2019).
Article
ADS
Google Scholar
Andrews-Hanna, J. C. & Zuber, M. T. Elliptical craters and basins on the terrestrial planets.Geol. Soc. Am. Spec. Pap.465, 1–13 (2010).
Google و Scholar و Article - تفاصيل مهمة
Zuber, M. T., Smith, D. E., Lemoine, F. G. & Neumann, G. A. The shape and internal structure of the Moon from the Clementine mission.Science266, 1839–1843 (1994).
Article
ADS
CAS
PubMed
Google Scholar
Keane, J. T., James, P. B. & Matsuyama, I. The Moon without impact basins and the nature of the South Pole–Aitken basin and the farside highlands. InProc. 53rd Lunar and Planetary Science ConferenceAbstract 1477 (Lunar and Planetary Institute, 2022).
Andrews-Hanna, J. C. et al. The structure and evolution of the lunar interior.Rev. Mineral. Geochem.89, 243–292 (2023).
and و the و J. - تفاصيل مهمة
Article
Google Scholar
Wieczorek, M. A., Weiss, B. P. & Stewart, S. T. An impactor origin for lunar magnetic anomalies.Science335, 1212–1215 (2012).
Article
ADS
CAS
PubMed
Google Scholar
Hood, L. L. & Artemieva, N. A. Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations.Icarus193, 485–502 (2008).
& و lunar و L. - تفاصيل مهمة
Article
ADS
Google Scholar
Wakita, S. et al. Impactor material records the ancient lunar magnetic field in antipodal anomalies.Nat. Commun.12, 6543 (2021).
Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Schultz, P. & Crawford, D. Origin of nearside structural and geochemical anomalies on the Moon.Geol. Soc. Am. Spec. Pap.477, 141–159 (2011).
the و Wakita, و S. - تفاصيل مهمة
Gault, D. E. & Wedekind, J. A. Experimental studies of oblique impact. In9th Lunar and Planetary Science Conference3843–3875 (Pergamon Press, 1989).
Johnson, B. C. et al. Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors.Icarus271, 350–359 (2016).
Article
ADS
Google Scholar
of و and و Gault, - تفاصيل مهمة
Schultz, P. H. & Stickle, A. M. Arrowhead craters and tomahawk basins: signatures of oblique impacts at large scales. InProc. 42nd Lunar and Planetary Science ConferenceAbstract 2611 (Lunar and Planetary Institute, 2011).
Andrews-Hanna, J. C. et al. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry.Science339, 675–678 (2013).
Article
ADS
CAS
PubMed
Google Scholar
Leonard, G. J. & Tanaka, K. L. Hellas basin, Mars: formation by oblique impact. InProc. 24th Lunar and Planetary Science ConferenceAbstract 867 (Lunar and Planetary Institute, 1993).
and و J. و by - تفاصيل مهمة
Tanaka, K. L. & Leonard, G. J. Geology and landscape evolution of the Hellas region of Mars.J. Geophys. Res. Planets.100, 5407–5432 (1995).
Article
ADS
Google Scholar
Wichman, R. W. & Schultz, P. H. The Crisium basin: implications of an oblique impact for basin ring formation and cavity collapse. InLarge Meteorite Impacts and Planetary Evolution, Geological Society of America Special Paper 293(eds Dressler, B. O., Grieve, R. A. F. & Sharpton, V. L.) https://doi.org/10.1130/SPE293-p61 (Geological Society of America, 1992).
Moruzzi, S. A., Andrews-Hanna, J. C., Schenk, P. & Johnson, B. C. Pluto’s Sputnik basin as a peak-ring or multiring basin: a comparative study.Icarus405, 115721 (2023).
& و of و R. - تفاصيل مهمة
Article
CAS
Google Scholar
Citron, R. I., Smith, D. E., Stewart, S. T., Hood, L. L. & Zuber, M. T. The South Pole-Aitken basin: constraints on impact excavation, melt, and ejecta.Geophys. Res. Lett.51, e2024GL110034 (2024).
Article
ADS
Google Scholar
Wakita, S. et al. Asouthwarddifferentiated asteroid forms the South-Pole Aitken basin. InProc. 56th Lunar and Planetary Science ConferenceAbstract 1403 (Lunar and Planetary Institute, 2025).
and و S. و L. - تفاصيل مهمة
Vaughan, W. M. & Head, J. W. Impact melt differentiation in the South Pole-Aitken basin: some observations and speculations.Planet. Space Sci.91, 101–106 (2014).
Article
ADS
CAS
Google Scholar
Gowman, G. & Andrews-Hanna, J. C. Gravity and density structure in the South Pole-Aitken basin rim region: implications for Artemis. InProc. 55th Lunar and Planetary Science ConferenceAbstract 1747 (Lunar and Planetary Institute, 2024).
Lawrence, D. J., Elphic, R. C., Feldman, W. C. & Prettyman, T. H. Small-area thorium features on the lunar surface.J. Geophys. Res. Planets108, 5102 (2003).
and و & و J. - تفاصيل مهمة
Article
ADS
Google Scholar
Moriarty, D. P. III & Petro, N. E. Mineralogical characterization of the lunar south polar region: 1. The Artemis exploration zone.J. Geophys. Res. Planets129, e2023JE008266 (2024).
Article
ADS
Google Scholar
Schmidt, M. W. & Kraettli, G. Experimental crystallization of the lunar magma ocean, initial selenotherm and density stratification, and implications for crust formation, overturn and the bulk silicate Moon composition.J. Geophys. Res. Planets127, e2022JE007187 (2022).
the و and و & - تفاصيل مهمة
Article
ADS
CAS
Google Scholar
Warren, P. H. & Wasson, J. T. The origin of KREEP.Rev. Geophys.17, 73–88 (1979).
Article
ADS
CAS
Google Scholar
Broquet, A. & Andrews-Hanna, J. C. The moon before mare.Icarus408, 115846 (2024).
& و J. و The - تفاصيل مهمة
Article
Google Scholar
Zhang, Q. W. L. et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts.Nature643, 356–360 (2024).
Article
ADS
PubMed
PubMed Central
Google Scholar
Haskin, L. A. The Imbrium impact event and the thorium distribution at the lunar highlands surface.J. Geophys. Res. Planets103, 1679–1689 (1998).
L. و the و Zhang, - تفاصيل مهمة
Article
ADS
CAS
Google Scholar
Levin, J. N., Evans, A. J., Andrews-Hanna, J. C. & Daubar, I. J. Lunar crustal KREEP distribution.J. Geophys. Res. Planets130, e2024JE008418 (2025).
Article
ADS
CAS
Google Scholar
Roy, A. et al. The significance of partition coefficients of heat production elements in the lunar interior for determining the present-day selenotherm. InProc. 54th Lunar and Planetary Science ConferenceAbstract 2292 (Lunar and Planetary Institute, 2023).
J. و A. و Lunar - تفاصيل مهمة
Kamata, S. et al. The relative timing of Lunar Magma Ocean solidification and the Late Heavy Bombardment inferred from highly degraded impact basin structures.Icarus250, 492–503 (2015).
Article
ADS
Google Scholar
Barnes, J. J. et al. Early degassing of lunar urKREEP by crust-breaching impact(s).Earth Planet. Sci. Lett.447, 84–94 (2016).
Article
ADS
CAS
Google Scholar
Article و ADS و Google - تفاصيل مهمة
Zhang, N. et al. Lunar compositional asymmetry explained by mantle overturn following the South Pole–Aitken impact.Nat. Geosci.15, 37–41 (2022).
Article
ADS
CAS
Google Scholar
Liang, W. et al. Vestiges of a lunar ilmenite layer following mantle overturn revealed by gravity data.Nat. Geosci.17, 361–366 (2024).
Article
ADS
CAS
Google Scholar
Article و ADS و CAS - تفاصيل مهمة
Morbidelli, A. et al. The timeline of the lunar bombardment: revisited.Icarus305, 262–276 (2018).
Article
ADS
CAS
Google Scholar
Zhu, M.-H. et al. Obliteration of ancient impact basins on the Moon by viscous relaxation.Nat. Astron.9, 333–346 (2025).
Article
ADS
Google Scholar
Article و ADS و Google - تفاصيل مهمة
Dauphas, N. et al. Completion of lunar magma ocean solidification at 4.43 Ga.Proc. Natl Acad. Sci. USA122, e2413802121 (2025).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuber, M. T. et al. Gravity field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) mission.Science339, 668–671 (2013).
Goossens, S. et al. High‐resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon’s crust.J. Geophys. Res. Planets125, e2019JE006086 (2020).
the و of و et - تفاصيل مهمة
Neumann, G. A. et al. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements.Sci. Adv.1, e1500852 (2015).
Article
ADS
PubMed
PubMed Central
Google Scholar
Liang, W. & Andrews-Hanna, J. C. Probing the source of ancient linear gravity anomalies on the Moon.Icarus380, 114978 (2022).
Article
Google Scholar
Article و Google و Scholar - تفاصيل مهمة
Wieczorek, M. A. & Meschede, M. SHTools: tools for working with spherical harmonics.Geochem. Geophys. Geosyst.19, 2574–2592 (2018).
Andrews-Hanna, J. C. et al. Ring faults and ring dikes around the Orientale basin on the Moon.Icarus310, 1–20 (2018).
Article
ADS
PubMed
Google Scholar
Lawrence, D. J. et al. Global elemental maps of the Moon: the Lunar Prospector gamma-ray spectrometer.Science281, 1484–1489 (1998).
the و J. و et - تفاصيل مهمة
Article
ADS
CAS
PubMed
Google Scholar
Prettyman, T. H. et al. Elemental composition of the lunar surface: analysis of gamma ray spectroscopy data from Lunar Prospector.J. Geophys. Res. Planets111, E12007 (2006).
Article
ADS
Google Scholar
Whitten, J. L. & Head, J. W. Lunar cryptomaria: physical characteristics, distribution, and implications for ancient volcanism.Icarus247, 150–171 (2015).
J. و of و Lunar - تفاصيل مهمة
Article
ADS
Google Scholar
Jolliff, B. L. et al. Non-mare silicic volcanism on the lunar farside at Compton–Belkovich.Nat. Geosci.4, 566–571 (2011).
Article
ADS
CAS
Google Scholar
Siegler, M. A. et al. Remote detection of a lunar granitic batholith at Compton–Belkovich.Nature620, 116–121 (2023).
et و al. و lunar - تفاصيل مهمة
Article
ADS
CAS
PubMed
Google Scholar
Hagerty, J. J. et al. Refined thorium abundances for lunar red spots: implications for evolved, nonmare volcanism on the Moon.J. Geophys. Res. Planets111, E06002 (2006).
Article
ADS
Google Scholar
Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL.Science339, 671–675 (2013).
J. و et و al. - تفاصيل مهمة
Article
ADS
CAS
PubMed
Google Scholar
Garrick-Bethell, I., Nimmo, F. & Wieczorek, M. A. Structure and formation of the lunar farside highlands.Science330, 949–951 (2010).
Article
ADS
CAS
PubMed
Google Scholar
Parmentier, E. M., Zhong, S. & Zuber, M. T. Gravitational differentiation due to initial chemical stratification: origin of lunar asymmetry by the creep of dense KREEP?Earth Planet. Sci. Lett.201, 473–480 (2002).
of و & و M. - تفاصيل مهمة
Article
ADS
CAS
Google Scholar
Jones, M. J. et al. A South Pole–Aitken impact origin of the lunar compositional asymmetry.Sci. Adv.8, eabm8475 (2022).
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber, R. C., Lin, P.-Y., Garnero, E. J., Williams, Q. & Lognonné, P. Seismic detection of the lunar core.Science331, 309–312 (2011).
of و the و lunar - تفاصيل مهمة
Article
ADS
CAS
PubMed
Google Scholar
James, P. B., Keane, J. T. & Lee, J. S. South Pole-Aitken basin ejecta inferred from crustal thickness. InProc. 53rd Lunar and Planetary Science ConferenceAbstract 1500 (Lunar and Planetary Institute, 2022).
Salters, V. J. M. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges.Earth Planet. Sci. Lett.166, 15–30 (1999).
Article
ADS
CAS
Google Scholar
J. و & و and - تفاصيل مهمة
Solomatov, V. 9.04 – Magma Oceans and Primordial Mantle Differentiation. InTreatise on Geophysics (Second Edition)Vol. 9 (ed. Schubert, G.) 81–104 https://doi.org/10.1016/B978-0-444-53802-4.00155-X (Elsevier, 2015).
McDonough, W. F. & Sun, S.-S. The composition of the Earth.Chem. Geol.120, 223–253 (1995).
Article
ADS
CAS
Google Scholar
Nemchin, A. A., Pidgeon, R. T., Whitehouse, M. J., Vaughan, J. P. & Meyer, C. SIMS U–Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP.Geochim. Cosmochim. Acta72, 668–689 (2008).
of و & و the - تفاصيل مهمة
Article
ADS
CAS
Google Scholar
Nemchin, A. et al. Timing of crystallization of the lunar magma ocean constrained by the oldest zircon.Nat. Geosci.2, 133–136 (2009).
Article
ADS
CAS
Google Scholar
Andrews-Hanna, J. C. Code accompanying the paper “Southward impactexcavatedmagma ocean at the lunar South Pole-Aitken basin”.Zenodohttps://doi.org/10.5281/zenodo.16816551 (2025).
the و of و lunar - تفاصيل مهمة
نشر لأول مرة على:www.nature.com
تاريخ النشر:2025-10-08 03:00:00
الكاتب:Jeffrey C. Andrews-Hanna
نشر و لأول و مرة - تفاصيل مهمة
تنويه من موقع “بتوقيت بيروت”:
تم جلب هذا المحتوى بشكل آلي من المصدر:
www.nature.com
بتاريخ:2025-10-08 03:00:00.
الآراء والمعلومات الواردة في هذا المقال لا تعبر بالضرورة عن رأي موقع “بتوقيت بيروت”، والمسؤولية الكاملة تقع على عاتق المصدر الأصلي.
ملاحظة:قد يتم استخدام الترجمة الآلية في بعض الأحيان لتوفير هذا المحتوى.

موقع بتوقيت بيروت — منصتك لمتابعة أهم الأخبار العاجلة وال ات السياسية والاقتصادية من لبنان والعالم. نحن نغطي الأحداث لحظة بلحظة، لتبقى دائمًا في قلب الخبر.
هذا و في و تم - تفاصيل مهمة
اكتشاف بتوقيت بيروت | اخبار لبنان والعالم لحظة بلحظة
اشترك أحدث التدوينات المرسلة إلى بريدك الإلكتروني.




